Estimate the slope of the curve at the indicated point.

1) [Diagram of a curve with a point (-3, -2)]

Find an equation for the tangent to the curve at the given point.

2) \(y = \frac{x^3}{4}, (6, 54) \)

3) \(y = x^2 - 4, (2, 0) \)

Find the slope of the curve at the indicated point.

4) \(y = x^2 - 8x + 2, x = 1 \)

5) \(y = \frac{4}{6 + x}, x = 5 \)

Solve the problem.

6) Find the points where the graph of the function have horizontal tangents.

\[f(x) = 2x^2 + 4x + 3 \]

7) Find equations of all tangents to the curve \(f(x) = \frac{4}{x} \) that have slope -1.

8) Find an equation of the tangent to the curve \(f(x) = 2x^2 - 2x + 1 \) that has slope 2.

9) The equation for free fall at the surface of Planet X is \(s = 8.43t^2 \) m with \(t \) in seconds. Assume a rock is dropped from the top of a 600m cliff. Find the speed of the rock at \(t = 3 \) sec.

Calculate the derivative of the function. Then find the value of the derivative as specified.

10) \(f(x) = 5x + 9; f'(2) \)

11) \(g(x) = x^3 + 5x; g'(1) \)

12) \(f(x) = \frac{8}{x}; f'(-1) \)

Find the indicated derivative.

13) \(\frac{dv}{dt} \) if \(v = t + \frac{9}{t} \)
Differentiate the function and find the slope of the tangent line at the given value of the independent variable.

14) \(s = -5t^4 - 2t^3, \ t = -1 \)

Use the formula \(f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} \) to find the derivative of the function.

15) \(f(x) = \frac{9}{x + 7} \)

16) \(f(x) = 5x^2 - 9x + 5 \)

17) \(g(x) = 4x + \sqrt{x} \)

The graph of a function is given. Choose the answer that represents the graph of its derivative.

18)

Given the graph of \(f \), find any values of \(x \) at which \(f' \) is not defined.

19)

Determine if the piecewise defined function is differentiable at the origin.

20) \(f(x) = \begin{cases} 4x - 5 & \text{if } x < 0 \\ x^2 + 5x + 5 & \text{if } x \geq 0 \end{cases} \)

Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given.

21)
Answer Key

Testname: PRACTICE05

1) \(\frac{1}{2}\)

2) \(y = 27x - 108\)

3) \(y = 4x - 8\)

4) \(m = -6\)

5) \(m = -\frac{4}{121}\)

6) \((-1, 1)\)

7) \(y = -x + 4, \ y = -x - 4\)

8) \(y = 2x - 1\)

9) 50.58 m/sec

10) \(f'(x) = 5; \ f'(2) = 5\)

11) \(g'(x) = 3x^2 + 5; \ g'(1) = 8\)

12) \(f'(x) = -\frac{8}{x^2}; \ f'(-1) = -8\)

13) \(1 - \frac{9}{12}\)

14) 14

15) \(-\frac{9}{(x + 7)^2}\)

16) \(10x - 9\)

17) \(4 + \frac{1}{2\sqrt{x}}\)

18)

19) \(x = -2, 2\)

20) Not differentiable

21) Since \(\lim_{x \to 0^+} f'(x) = 2\) while \(\lim_{x \to 0^-} f'(x) = 1\), \(f(x)\) is not differentiable at \(x = 0\).