1. Sketch the interval \((a, b)\) on the x-axis with the point \(c\) inside the interval. Then find the largest value of \(\delta > 0\) such that for all \(x\), \(a < x < b\) whenever \(0 < |x - c| < \delta\).

\[a = 4, \quad b = 9, \quad c = 8\]

Sketch the interval \((a, b)\) on the x-axis with the point \(c\) inside the interval. Choose the correct answer below.

- Option A.
- Option B.
- Option C.
- Option D.

The largest value of \(\delta\) is \(\frac{1}{12}\). (Type an exact answer in simplified form.)

2. Sketch the interval \((a, b)\) on the x-axis with the point \(c\) inside. Then find the largest value of \(\delta > 0\) such that for all \(x\), \(0 < |x - c| < \delta\) implies \(a < x < b\).

\[a = -\frac{1}{3}, \quad b = -\frac{1}{7}, \quad c = -\frac{1}{4}\]

Choose the correct sketch below.

- Option A.
- Option B.
- Option C.
- Option D.

The largest possible value for \(\delta\) is \(\frac{1}{12}\). (Type an integer or a simplified fraction.)

3. Sketch the interval \((a, b)\) on the x-axis with the point \(c\) inside. Then find the largest value of \(\delta > 0\) such that for all \(x\), \(0 < |x - c| < \delta\) implies \(a < x < b\).

\[a = 3.7601, \quad b = 4.2391, \quad c = 4\]

Choose the correct sketch below.

- Option A.
- Option B.
- Option C.
- Option D.

The largest possible value for \(\delta\) is \(0.2391\). (Type an exact answer.)
4. Use the graph below to find the largest value of \(\delta > 0 \) such that for all \(x \), \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - c| < \delta \).

![Graph](image)

The largest value of \(\delta \) is \(\frac{17}{9} \).
(Simplify your answer. Type an exact answer. Type an integer or a fraction.)

5. For the given function \(f(x) \) and values of \(L \), \(c \), and \(\varepsilon > 0 \) find the largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds. Then determine the largest value for \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \), the inequality \(|f(x) - L| < \varepsilon \) holds.

\[f(x) = 5x + 7, \quad L = 37, \quad c = 6, \quad \varepsilon = 0.05 \]

The largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds is \((\frac{5.99}{\varepsilon}, \frac{6.01}{\varepsilon}) \).
(Type integers or decimals.)

The largest value of \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \), the inequality \(|f(x) - L| < \varepsilon \) holds is \(0.01 \).
(Simplify your answer. Type an integer or a decimal.)

6. For the given function \(f(x) \) and values of \(L \), \(c \), and \(\varepsilon > 0 \) find the largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds. Then determine the largest value for \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \), the inequality \(|f(x) - L| < \varepsilon \) holds.

\[f(x) = \sqrt{19x + 26}, \quad L = 11, \quad c = 5, \quad \varepsilon = 0.07 \]

The largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds is \((\frac{4.9192}{\varepsilon}, \frac{5.0813}{\varepsilon}) \).
(Round to four decimal places as needed.)

The largest value of \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \), the inequality \(|f(x) - L| < \varepsilon \) holds is \(0.0808 \).
(Simplify your answer. Round to four decimal places as needed.)

7. For the given function \(f(x) \) and numbers \(L \), \(c \), and \(\varepsilon > 0 \), find the largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds. Then give the largest value of \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \) the inequality \(|f(x) - L| < \varepsilon \) holds.

\[f(x) = \sqrt{20 - x}, \quad L = 1, \quad c = 19, \quad \varepsilon = 1 \]

The largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds is \((\frac{16}{\varepsilon}, \frac{20}{\varepsilon}) \).
(Type integers or decimals.)

Find the largest value \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \) the inequality \(|f(x) - L| < \varepsilon \) holds.
\(\delta = \frac{1}{\varepsilon} \)
(Simplify your answer. Type an integer or a decimal.)
8. For the given function \(f(x) \) and values of \(L, c, \) and \(\varepsilon > 0 \) find the largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds. Then determine the largest value for \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \), the inequality \(|f(x) - L| < \varepsilon \) holds.

\[
f(x) = \frac{1}{x}, \quad L = \frac{1}{8}, \quad c = 8, \quad \varepsilon = 0.01
\]

The largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds is \((\frac{200}{27}, \frac{200}{23})\).

(Type exact answers.)

The largest value of \(\delta > 0 \) such that \(0 < |x - c| < \delta \rightarrow |f(x) - L| < \varepsilon \) is \(\frac{16}{27}\).

(Type an exact answer.)

9. For the given function \(f(x) \) and numbers \(L, c, \) and \(\varepsilon > 0 \), find the largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds. Then give the largest value of \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \) the inequality \(|f(x) - L| < \varepsilon \) holds.

\[
f(x) = x^2 - 7, \quad L = 2, \quad c = 3, \quad \varepsilon = 1
\]

The largest open interval about \(c \) on which the inequality \(|f(x) - L| < \varepsilon \) holds is \((\sqrt{2} \sqrt{10}, \sqrt{10})\).

(Type exact answers, using radicals as needed.)

Find the largest value of \(\delta > 0 \) such that for all \(x \) satisfying \(0 < |x - c| < \delta \) the inequality \(|f(x) - L| < \varepsilon \) holds.

\[
\delta = \sqrt{10} - 3
\]

Note: \(\sqrt{10} \) stands for square root of...; also, \(\sqrt{8} \) simplifies to \(2 \sqrt{2}\).

(Simplify your answer. Type an exact answer, using radicals as needed.)

10. For the given function \(f(x) \), the point \(c \), and a positive number \(\varepsilon \), find \(L = \lim_{x \to c} f(x) \). Then find the largest value of \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - c| < \delta \).

\[
f(x) = 6 - 4x, \quad c = 5, \quad \varepsilon = 0.01
\]

\[
L = \frac{14}{10}
\]

(Simplify your answer.)

What is the largest possible value for \(\delta \)?

\[
\delta = 0.0025
\]

(Type an exact answer in simplified form.)

11. For the given function \(f(x) \) and the given values of \(c \) and \(\varepsilon > 0 \), find \(L = \lim_{x \to c} f(x) \).

Then determine the largest value for \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - c| < \delta \).

\[
f(x) = \frac{x^2 - 169}{x - 13}, \quad c = 13, \quad \varepsilon = 0.07
\]

Notice: Only questions 1 thru 10 on MyMathLab HW

The value of \(L \) is _________.

(Simplify your answer.)

The largest value of \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - c| < \delta \) is _________.

(Simplify your answer. Round to the nearest hundredth as needed.)

12. For the given function \(f(x) \), the point \(c \), and a positive number \(\varepsilon \), find \(L = \lim_{x \to c} f(x) \). Then find the largest value of \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - c| < \delta \).

\[
f(x) = \sqrt{8 - 8x}, \quad c = -1, \quad \varepsilon = 0.2
\]

\[
L = __________
\]

(Simplify your answer.)

What is the largest possible value for \(\delta \)?

\[
\delta = __________
\]

(Type an exact answer in simplified form.)